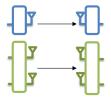
CS598 WSI Lecture 8 Scribe Notes (FA2023)


Image Credits: https://courses.engr.illinois.edu/ece598hh/fa2020/

Lecture Part 1 - MIMO Continue

Scenario 1:

Setup:

- 1. 2 Antenna AP <-> 2 Antenna iPhone
- 2. 1 Antenna Ap <-> 1 Antenna iPhone

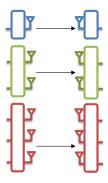
Problem:

Green transmitter's signals will interference at the Blue Receiver. How can Green and Blue transmit the singal in parallel?

Solution:

Interferance Nulling

Solution Details:


Alice
$$h_1$$
Bob $\alpha \mathbf{x}$
 $\beta \mathbf{x}$
 h_2
 h_1
 h_2
 h_3
 h_4
 h_5
 h_5
 h_6
 h_7
 h_8
 h_9
 h_9

h1 and h2 can be known by

- (1) feed back from Alice
- (2) reciprocity: e.g., h12 = h21 (Note: Not true for other medium like water. Reference: https://dl.acm.org/doi/10.1145/3544216.3544258)

Scenario 2:

Setup:

Problem:

In this setup, the red transmitter (3 antennas) needs to do nulling on blue and green receivers (in total 3 antennas). Mathmatically, we cannot find α, β, γ because the only solution for the following equations is

$$\alpha = \beta = \gamma = 0 \tag{2}$$

, which means we are transmit nothing.

$$(h_{11}\alpha + h_{21}\beta + h_{31}\gamma)z = 0$$
$$(h_{12}\alpha + h_{22}\beta + h_{32}\gamma)z = 0$$
$$(h_{13}\alpha + h_{23}\beta + h_{33}\gamma)z = 0$$

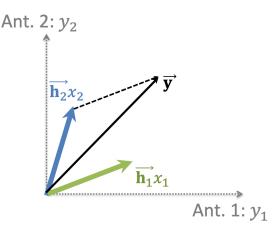
Solution:

Alignment

Solution Details:

Recap1 Antenna Space:

$$x_{1} = h_{11}x_{1} + h_{12}x_{2}$$


$$x_{2} = h_{12}x_{1} + h_{12}x_{2}$$

$$y_{1} = h_{11}x_{1} + h_{12}x_{2}$$

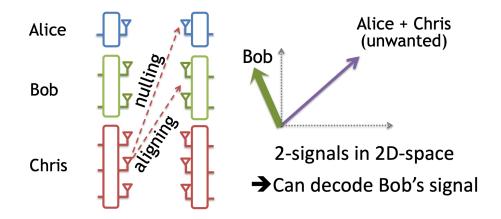
$$y_{2} = h_{21}x_{1} + h_{22}x_{2}$$

$$y_{2} = h_{21}x_{1} + h_{22}x_{2}$$

$$\overrightarrow{\mathbf{y}} = \overrightarrow{\mathbf{h}_1} x_1 + \overrightarrow{\mathbf{h}_2} x_2$$

Knowing $ec{h1}$, you can prohect $ec{y}$ to $ec{h1}^\perp$ to decode $oldsymbol{x_2}$.

Receiver with N antennas can decode N signals.


Recap2:

Transmitter can roate \vec{y}

Solution:

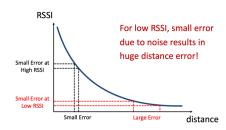
Red transmitter rotates its signal to align with Blue's signal to reduce the number of unwanted signals at the green reciever from 2 to 1. Now at the green side (two receiver antennas), it can decode two signals (one wanted from green transmitter + aligned unwanted signal from red and blue transmitters). Recap: **Receiver with N antennas can decode N signals.**

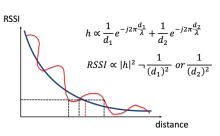
Lecture Part 2 - Localization

Application:

- 1. Airport negivation
- 2. Shopping mall
- 3. Automatic Checkout: Amazon Go

Tons of cameras in Amazon Go Seattle (I took them in Summer 2023):


RSSI (Received signal strength Indicator)


Principle:

RSSI = $|h|^2$ propotional to $\frac{1}{d^2}$

Problems:

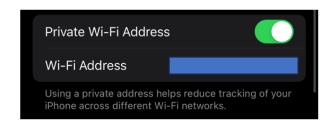
- 1. High error at long distance.
- 2. Multipath problem.
- 3. Other interference. Microwave oven...

Fingerprinitnig

Principle:

- 1. Training phase -> get finger print
- 2. Deployment phase
 - 1. compare my channel to the data base
- 3. Use RSSI from all APs that you can listen to to find the best matching in the database.

Can deal with multipath problem.

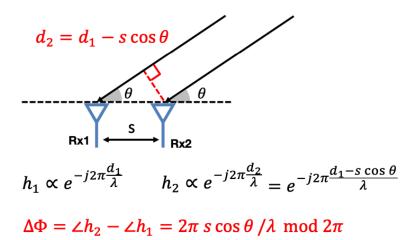

Problems:

- 1. Does not work with environment change (people, room layout change, ...)
- 2. Labor intensive

Lecture Part 3 - MAC Randomnization

Change your MAC (can be changed by software) periodically for security and privacy considerations (reduce tracking across Wi-Fi networks).

In your iPhone, click the information symbol in next to the Wi-Fi you are connected to then you can find an option called Private Wi-Fi Address which is for enable/disenable MAC randomization.



(screenshot from my iPhone)

Lecture Part 4 - Angle of Arrival (AoA) Start

We briefly discussed AoA and I think the content can be covered by the following image.

Measure Angle of Arrival (AoA) from device to each AP

